Колмогоров, Андрей Николаевич
       > НА ГЛАВНУЮ > БИОГРАФИЧЕСКИЙ УКАЗАТЕЛЬ > УКАЗАТЕЛЬ К >

ссылка на XPOHOC

Колмогоров, Андрей Николаевич

1903-1987

БИОГРАФИЧЕСКИЙ УКАЗАТЕЛЬ


XPOHOC
ВВЕДЕНИЕ В ПРОЕКТ
БИБЛИОТЕКА ХРОНОСА
ИСТОРИЧЕСКИЕ ИСТОЧНИКИ
БИОГРАФИЧЕСКИЙ УКАЗАТЕЛЬ
ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ
ГЕНЕАЛОГИЧЕСКИЕ ТАБЛИЦЫ
СТРАНЫ И ГОСУДАРСТВА
ЭТНОНИМЫ
РЕЛИГИИ МИРА
СТАТЬИ НА ИСТОРИЧЕСКИЕ ТЕМЫ
МЕТОДИКА ПРЕПОДАВАНИЯ
КАРТА САЙТА
АВТОРЫ ХРОНОСА

ХРОНОС:
В Фейсбуке
ВКонтакте
В ЖЖ
Twitter
Форум
Личный блог

Родственные проекты:
РУМЯНЦЕВСКИЙ МУЗЕЙ
ДОКУМЕНТЫ XX ВЕКА
ИСТОРИЧЕСКАЯ ГЕОГРАФИЯ
ПРАВИТЕЛИ МИРА
ВОЙНА 1812 ГОДА
ПЕРВАЯ МИРОВАЯ
СЛАВЯНСТВО
ЭТНОЦИКЛОПЕДИЯ
АПСУАРА
РУССКОЕ ПОЛЕ
ХРОНОС. Всемирная история в интернете

Андрей Николаевич Колмогоров

Колмогоров Андрей Николаевич (1903-1987), российский математик, основатель научных школ по теории вероятностей и теории функций, академик АН СССР (1939), Герой Социалистического Труда (1963). Фундаментальные труды по теории функций, математической логике, топологии, дифференциальным уравнениям, функциональному анализу и особенно по теории вероятностей (аксиоматическое обоснование, теория случайных процессов) и теории информации. Ленинская премия (1965), Государственная премия СССР (1941).


КОЛМОГОРОВ Андрей Николаевич (12/25.04.1903-20.10.1987), русский математик. Автор ряда мировых открытий. Создатель научной школы по теории вероятностей и теории функций. Автор фундаментальных трудов по механике (теория турбулентности), информатике, математической логике, топологии (теория верхних гомологий), дифференциальным уравнениям, функциональному анализу, теории функций и, особенно, по теории вероятностей (аксиоматическое обоснование, теория случайных процессов).

Русское небо


Исторический словарь:

КОЛМОГОРОВ Андрей Николаевич (1903—1987) — советский ученый, математик, академик АН СССР (1939), Герой Социалистического Труда (1963), лауреат Сталинской (1941) и Ленинской премий (1965).

Профессор Московского университета с 1931 г. Научную деятельность начал в области теории функций переменного, создав фундаментальные труды по тригонометрическим рядам, теории меры, теории множеств, теории интеграла, теории приближения функций. Его работы в области теории вероятностей имеют основополагающее значение. Развил теорию стационарных случайных процессов, процессов со стационарными приращениями, ветвящихся процессов. Внес важный вклад в теорию информации, в исследования по теории стрельбы, статистическим методам контроля массовой продукции, применениям математических методов в биологии, математической лингвистике.

Создал научные школы в области теории вероятностей и теории функций, из которых вышли многие советские ученые — академики АН СССР. Член Парижской АН, Лондонского королевского общества и ряда других зарубежных академий и научных обществ.

Орлов А.С., Георгиева Н.Г., Георгиев В.А. Исторический словарь. 2-е изд. М., 2012, с. 229-230.


Из советской энциклопедии:

Колмогоров Андрей Николаевич [р. 12(25). 4.1903, Тамбов], советский математик, академик АН СССР (1939), Герой Социалистического Труда (1963). Окончил Моск. гос. ун-т (1925), с 1931 профессор ун-та. Внёс большой вклад в развитие математики и её приложений. Его труды оказали большое влияние на развитие таких разделов математики, как теория функций действительного переменного, конструктивная логика, теория дифференциальных уравнений, функциональный анализ и др. Особенно велико значение работ К. по теории вероятностей. В годы Великой Отечеств, войны К. уделял большое внимание разработке проблем, имеющих непосредств. отношение к обороне страны. Ему принадлежат исследования по теории стрельбы, по статистич. методам контроля массовой продукции. К . создал большую научную школу в области теории вероятностей и теории функций. Среди его учеников такие крупные учёные, как А. И. Мальцев, М. Д. Миллионщиков, С. М. Никольский, Ю. В. Прохоров, А. М. Обухов и др. К. проделал большую работу в области развития высшего образования в стране, популяризации матем. науки и совершенствования матем. образования в средней школе. Был редактором матем. отдела 1-го издания БСЭ, чл. главной редакции 2-го издания БСЭ. Чл. ряда зарубежных академий, ун-тов, науч. учреждений и обществ. К.— лауреат Гос. пр. СССР (1941), Ленинской пр. (1965), Междунар. премии Бальзана (1963). Награждён 6 орденами Ленина, орденом Трудового Красного Знамени, медалями.

Использованы материалы Советской военной энциклопедии в 8-ми томах, том 4.


Специалист по теории вероятности

Андрей Николаевич Колмогоров родился 25 апреля 1903 года в Тамбове.

В семь лет Колмогорова определили в частную гимназию. Она была организована кружком московской прогрессивной интеллигенции и все время находилась под угрозой закрытия.

В 1920 году он поступил на математическое отделение Московского университета.

В первые же месяцы Андрей сдал экзамены за курс.

Лекции профессора Московского университета Николая Николаевича Лузина, по свидетельству современников, были выдающимся явлением.

Первые публикации Колмогорова были посвящены проблемам дескриптивной и метрической теории функций. Наиболее ранняя из них появилась в 1923 году. Обсуждавшиеся в середине двадцатых годов повсюду, в том числе в Москве, вопросы оснований математического анализа и тесно с ними связанные исследования по математической логике привлекли внимание Колмогорова почти в самом начале его творчества. Он принял участие в дискуссиях между двумя основными противостоявшими тогда методологическими школами - формально-аксиоматической (Д. Гильберт) и интуиционистской (Л.Э.Я. Броуэр и Г. Вейль). При этом он получил совершенно неожиданный первоклассный результат, доказав в 1925 году, что все известные предложения классической формальной логики при определенной интерпретации переходят в предложения интуиционистской логики. Глубокий интерес к философии математики Колмогоров сохранил навсегда.

Многие годы тесного и плодотворного сотрудничества связывали его с А.Я. Хинчиным, который в то время начал разработку вопросов теории вероятностей. Она и стала областью совместной деятельности ученых.

Наука "о случае" еще со времен Чебышева являлась как бы русской национальной наукой. Ее успехи преумножили советские математики. Особое значение для приложения математических методов к естествознанию и практическим наукам имел закон больших чисел. Разыскать необходимые и достаточные условия, при которых он имеет место, - вот в чем заключался искомый результат. Крупнейшие математики многих стран на протяжении десятилетий безуспешно старались его получить. В 1926 году эти условия были получены аспирантом Колмогоровым.

Андрей Николаевич до конца своих дней считал теорию вероятностей главной своей специальностью, хотя областей математики, в которых он работал, можно насчитать добрых два десятка.

В 1930 году Колмогоров стал профессором МГУ, с 1933 по 1939 год был ректором Института математики и механики МГУ, многие годы руководил кафедрой теории вероятностей и лабораторией статистических методов. В 1935 году Колмогорову была присвоена степень доктора физико-математических наук, в 1939 году он был избран членом АН СССР. Незадолго до начала Великой Отечественной войны Колмогорову и Хинчину за работы по теории вероятностей была присуждена Государственная премия.

А Академик Колмогоров - почетный член многих иностранных академий и научных обществ. В марте 1963 года ученый был удостоен международной премии Больцано, которую называют "Нобелевской премией математиков". В том же году Андрею Николаевичу присвоили звание Героя Социалистического Труда. В 1965 году ему присуждена Ленинская премия. В последние годы Колмогоров заведовал кафедрой математической логики.

Умер Колмогоров в 1987 году.

Использован материал сайт http://100top.ru/encyclopedia/ 


Колмогоров Андрей Николаевич (12/25 апреля 1903, Тамбов — 20 октября 1997, Москва) — российский ученый, оказавший влияние на развитие ряда разделов математики (в т. ч. математической логики), ее философии, методологии, истории и преподавания, а также внесший значительный вклад в кибернетику, информатику, логику, лингвистику, историческую науку, гидродинамику, небесную механику, метеорологию, теорию стрельбы и теорию стиха. Действительный член Академии наук СССР (1939) и многих др. иностранных академий.

Колмогоров окончил физико-математический факультет Московского университета (1925) и аспирантуру там же (1929); во время обучения был учеником Н. Н. Лузина. Первые научные работы — одну по истории Новгорода (опубликована в 1994) и другую математическую (опубликована в 1987) — выполнил в январе 1921. Первая научная публикация — в 1923. С1931 состоял профессором Московского университета и внес выдающийся вклад в организацию математического образования. В МГУ Колмогоров создал и первым возглавил кафедру теории вероятностей (1935), лабораторию статистических методов (1963), кафедру математической статистики (1976); с 1980 и до конца жизни заведовал кафедрой математической логики. В Математическом институте им. Стеклова АН СССР Колмогоров с 1939 по 1960 возглавлял отдел теории вероятностей, а с 1983 — отдел математической статистики и теории информации.

Центральным для методологической позиции Колмогорова был вопрос о соотношении математических представлений с реальной действительностью. Подход Колмогорова к решению этого вопроса нашел отражение в его статье «Математика», опубликованной во всех изданиях БСЭ. Эта статья содержит оригинальную периодизацию истории математики, анализ предмета и метода математики и ее места в системе наук, а также специальный раздел, посвященный вопросам обоснования математики. В трудах Колмогорова вскрыты как внешние, так и внутриматематические мотивы возникновения новых математических понятий и теорий. Колмогоров отстаивал ту точку зрения, что восхождение к более высоким ступенях абстракции имеет практический смысл, и потому настаивал на более широком внедрении метода абстракции в преподавание. В 1933 Колмогоров предложил общепринятую ныне систему аксиоматического обоснования теории вероятностей. Для Колмогорова характерно повышенное внимание к различению в объектах и процессах конструктивного и неконструктивного. Конструктивными объектами с необходимостью являются объекты, участвующие в конструктивных процессах, а также выражения какого-либо языка. При этом выражение языка служит, как правило, именем неконструктивного объекта. Последнее наблюдение естественно приводит к понятию нумерации, служащему математическим выражением общей идеи соответствия между именами (в математической терминологии — «номерами») и их денотатами в рамках какой-либо системы имен (в математической терминологии — «нумерации»); основы теории нумераций были сформулированы Колмогоровым в 1954. Интерес к конструктивным процессам привел его к алгоритмической проблематике. В частности, в 60-х гг. он предложил новые, алгоритмические подходы к обоснованию теории вероятностей, что позволило в конечном счете дать строгое определение понятию случайности для индивидуального объекта (что недоступно традиционной теории вероятностей). В кибернетике Колмогоров проанализировал роль дискретного (в противопоставлении непрерывному) и отстаивал принципиальную возможность возникновения у машин мышления, эмоций, целенаправленной деятельности и способности конструировать еще более сложные машины. В информатике в 50-х гг. он предложил общее определение понятия алгоритма, а в 60-х гг., опираясь на алгоритмические представления, создал теорию сложности конструктивных объектов. Эта теория в свою очередь была применена им для построения нового обоснования теории информации. Выдающуюся роль в логике играют две статьи Колмогорова: «О принципе tertium non datur» (Математический сборник, 1925, т. 32, № 4, с. 668—677) и «Zur Deutung der intuitionistischen Logik» (Mathematische Zeitschrift, 1932, Bd. 35, S. 58 — 65); обе перепечатаны в его кн. «Избранные труды. Математика и механика» (вторая — в рус. пер.: «К толкованию интуиционистской логики»). Обе объединены общей идеей — на-вести мост между интуиционистской логикой и традиционной, или «классической», логикой, причем сделать это средствами, свободными как от идеологии интуиционизма, так и от крайностей теоретико-множественного догматизма. В статье 1925 предлагается такая интерпретация «классической логики, которая приемлема с точки зрения интуиционизма; напротив, в статье 1932 предлагается такая интерпретация интуиционистской логики, которая приемлема с классических позиций.

В статье «О принципе...» ученый принимает предпринятую главой интуиционизма Брауэром критику традиционной логики, при этом обнаруживая в последней еще один уязвимый, но обойденный критикой Брауэра логический принцип, а именно принцип, выражаемый аксиомой А —> (-> А—>В). Как указывает Колмогоров, эта аксиома «не имеет и не может иметь интуитивных оснований как утверждающая нечто о последствиях невозможного». Он выдвигает два вопроса: 1) почему незаконное, с интуиционистской точки зрения, применение исключенного третьего принципа часто остается незамеченным? 2) почему оно не привело до сих пор к противоречию? На оба вопроса в статье даются ответы. На 1-й вопрос — потому что применения закона исключенного третьего оправданы, коль скоро возникающее в результате таких применений суждение носит финитный характер; действительно, в этом случае оно может быть доказано и без использования указанного закона (это открытие опровергло точку зрения Брауэра о том, что при получении финитных результатов должны быть запрещены нефинитные умозаключения). На 2-й вопрос — потому что если бы противоречие было получено при использовании закона исключенного третьего, то оно могло бы быть получено и без него; здесь впервые в истории логики произошло (предвосхитившее последующие работы Гёделя 30-х гг.) доказательство относительной непротиворечивости формальной аксиоматической системы, т. е. такое доказательство непротиворечивости, которое использует презумпцию о непротиворечивости другой системы. Колмогоров точно очертил круг тех суждений, для которых составленные из них тавтологии классической логики высказываний являются интуиционистски обоснованными: это суть те и только те суждения, для которых выполняется двойного отрицания закон. В этой же статье Колмогоров впервые предложил позитивный анализ обоснованности с точки зрения интуиционизма, традиционной, или. «классической», математики. Одновременно он впервые сделал интуиционистскую логику объектом строгого математического анализа. В статье была предложена первая система аксиом для этой логики, ныне известная как минимальное исчисление для отрицания и импликации.

В 1-м разделе статьи «Zur Deutung...» («К толкованию...») Колмогоров наполняет формулы интуиционистской пропозициональной логики новым содержанием, свободным от философских предпосылок интуиционизма. Он предлагает рассматривать каждую такую формулу не как утверждение, а как проблему (т. е. как требование указать или построить объект, подчиненный тем или иным заранее заданным условиям). Понятие проблемы, или задачи, есть одно из фундаментальных понятий логики; Колмогоров был первым, кто включил это понятие в логико-математический дискурс, предвосхитив т. н. семантику реализуемости (Клини—Нельсона). Предложенная Колмогоровым интерпретация интуиционистской логики близка к концепции Гейтинга, однако у последнего отсутствует четкое различение между суждением и проблемой. Существенным этапом в становлении логического мышления явилось предложенное Колмогоровым уточнение представления о сводимости одной проблемы к другой. Сам Колмогоров впоследствии так определял цель статьи: «Работа писалась в надежде на то, что логика решения задач сделается со временем постоянным разделом курса логики. Предполагалось создание единого логического аппарата, имеющего дело с объектами двух типов — высказываниями и задачами». Во 2-м разделе статьи выдвигается и обосновывается следующий взгляд: с интуиционистской точки зрения нельзя, вообще говоря, рассматривать отрицание общего суждения в качестве содержательного суждения. «Но тогда, — указывает Колмогоров, — исчезает предмет интуиционистской логики, поскольку теперь принцип исключенного третьего оказывается справедливым для всех суждений, для которых отрицание вообще имеет смысл. Возникает, однако, новый вопрос: какие логические законы справедливы для суждений, отрицание которых не имеет смысла?»

В. А. Успенский

Новая философская энциклопедия. В четырех томах. / Ин-т философии РАН. Научно-ред. совет: В.С. Степин, А.А. Гусейнов, Г.Ю. Семигин. М., Мысль, 2010, т. II, Е – М, с. 272-274.


Сочинения:

Элементы теории функций и функционального анализа. Изд. 3-е. М., 1972. Библиогр.: с. 488— 489.

Основные понятия теории вероятностей. М., 1974;

Введение в математическую логику. М., 1982 (соавтор Драгалин А. Г.)\

Математическая логика: Дополнительные главы. М., 19S4 (соавтор Драгалин А. Г.);

Избр. труды. Математика и механика. М., 1985; Теория вероятностей и математическая статистика. М., 1986; Теория информации и теория алгоритмов. М., 1987; Математика — наука и профессия. М., 1988; Математика в ее историческом развитии. М., 1991; Новгородское землевладение XV века. М., 1994; Современные споры о природе математики. — «Научное слово», 1929, № 6; Современная математика. — Сб. статей по философии математики. М., 1936; Предисловие. — В кн.: Гейтинг А. Обзор исследований по основаниям математики. М., 1936; Предисловие редактора перевода. — В кн.: Петер Р. Рекурсивные функции. М., 1954; Предисловие. — В кн.: Эшби У. Р. Введение в кибернетику. М., 1958; Жизнь и мышление как особые формы существования материи. — В кн.: О сущности жизни. М., 1965; Письма А. Н. Колмогорова к А. Рейтингу. — «Успехи математических наук», 1988, т. 43, вып. 6; Семиотические послания. — «Новое литературное обозрение», 1997, № 24.

Соавт.: С. В. Фомин; Основные понятия теории вероятностей. Изд. 2-е. М., 1074.

Литература:

Гнеденко Б. В. Андрей Николаевич Колмогоров (К 70-летию со дня рождения). — «Успехи мат. наук», 1973, т. 28, вып. 5 (173), с. 5—15.

Успенский В: А. Наш великий современник Колмогоров. — В кн.: Колмогоров А. Математика в ее историческом развитии. М., 1991;

Колмогоров в воспоминаниях. М., 1993;

Uspensky V. A. Kolmogorov and mathematical logic. — «The Journal of Symbolic Logic», 1992, vol. 57. N 2, P. 385-412;

Youshckmtch A. P. A. N. Kolmogorov: Historian and Philosopher of Mathematics. — «Historia mathematica», 1983, vol. 10, N 4, R 383-395.

 

 

 

ХРОНОС: ВСЕМИРНАЯ ИСТОРИЯ В ИНТЕРНЕТЕ



ХРОНОС существует с 20 января 2000 года,

Редактор Вячеслав Румянцев

При цитировании давайте ссылку на ХРОНОС